Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 362
Filtrar
1.
Front Cell Dev Biol ; 12: 1335061, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572485

RESUMO

Alveolarization ensures sufficient lung surface area for gas exchange, and during bulk alveolarization in mice (postnatal day [P] 4.5-14.5), alpha-smooth muscle actin (SMA)+ myofibroblasts accumulate, secrete elastin, and lay down alveolar septum. Herein, we delineate the dynamics of the lineage of early postnatal SMA+ myofibroblasts during and after bulk alveolarization and in response to lung injury. SMA+ lung myofibroblasts first appear at ∼ P2.5 and proliferate robustly. Lineage tracing shows that, at P14.5 and over the next few days, the vast majority of SMA+ myofibroblasts downregulate smooth muscle cell markers and undergo apoptosis. Of note, ∼8% of these dedifferentiated cells and another ∼1% of SMA+ myofibroblasts persist to adulthood. Single cell RNA sequencing analysis of the persistent SMA- cells and SMA+ myofibroblasts in the adult lung reveals distinct gene expression profiles. For instance, dedifferentiated SMA- cells exhibit higher levels of tissue remodeling genes. Most interestingly, these dedifferentiated early postnatal myofibroblasts re-express SMA upon exposure of the adult lung to hypoxia or the pro-fibrotic drug bleomycin. However, unlike during alveolarization, these cells that re-express SMA do not proliferate with hypoxia. In sum, dedifferentiated early postnatal myofibroblasts are a previously undescribed cell type in the adult lung and redifferentiate in response to injury.

2.
bioRxiv ; 2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38559175

RESUMO

Idiopathic pulmonary fibrosis (IPF) is characterized by progressive scarring and loss of lung function. With limited treatment options, patients succumb to the disease within 2-5 years. The molecular pathogenesis of IPF regarding the immunologic changes that occur is poorly understood. We characterize a role for non-canonical aryl-hydrocarbon receptor signaling (ncAHR) in dendritic cells (DCs) that leads to production of IL-6 and IL-17, promoting fibrosis. TLR9 signaling in myofibroblasts is shown to regulate production of TDO2 which converts tryptophan into the endogenous AHR ligand kynurenine. Mice with augmented ncAHR signaling were created by crossing floxed AHR exon-2 deletion mice (AHR Δex2 ) with mice harboring a CD11c-Cre. Bleomycin was used to study fibrotic pathogenesis. Isolated CD11c+ cells and primary fibroblasts were treated ex-vivo with relevant TLR agonists and AHR modulating compounds to study how AHR signaling influenced inflammatory cytokine production. Human datasets were also interrogated. Inhibition of all AHR signaling rescued fibrosis, however, AHR Δex2 mice treated with bleomycin developed more fibrosis and DCs from these mice were hyperinflammatory and profibrotic upon adoptive transfer. Treatment of fibrotic fibroblasts with TLR9 agonist increased expression of TDO2. Study of human samples corroborate the relevance of these findings in IPF patients. We also, for the first time, identify that AHR exon-2 floxed mice retain capacity for ncAHR signaling.

3.
Thorax ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448221

RESUMO

BACKGROUND: Fibrotic interstitial lung diseases (fILDs) are a heterogeneous group of lung diseases associated with significant morbidity and mortality. Despite a large increase in the number of clinical trials in the last 10 years, current regulatory-approved management approaches are limited to two therapies that prevent the progression of fibrosis. The drug development pipeline is long and there is an urgent need to accelerate this process. This manuscript introduces the concept and design of an innovative research approach to drug development in fILD: a global Randomised Embedded Multifactorial Adaptive Platform in fILD (REMAP-ILD). METHODS: Description of the REMAP-ILD concept and design: the specific terminology, design characteristics (multifactorial, adaptive features, statistical approach), target population, interventions, outcomes, mission and values, and organisational structure. RESULTS: The target population will be adult patients with fILD, and the primary outcome will be a disease progression model incorporating forced vital capacity and mortality over 12 months. Responsive adaptive randomisation, prespecified thresholds for success and futility will be used to assess the effectiveness and safety of interventions. REMAP-ILD embraces the core values of diversity, equity, and inclusion for patients and researchers, and prioritises an open-science approach to data sharing and dissemination of results. CONCLUSION: By using an innovative and efficient adaptive multi-interventional trial platform design, we aim to accelerate and improve care for patients with fILD. Through worldwide collaboration, novel analytical methodology and pragmatic trial delivery, REMAP-ILD aims to overcome major limitations associated with conventional randomised controlled trial approaches to rapidly improve the care of people living with fILD.

4.
Artigo em Inglês | MEDLINE | ID: mdl-38375579

RESUMO

Excessive or persistent inflammation may have detrimental effects on lung structure and function. Currently, our understanding of conserved host mechanisms that control the inflammatory response remains incompletely understood. In this study, we investigated the role of type I interferon signaling in the inflammatory response against diverse clinically relevant stimuli. Using mice deficient in type I interferon signaling (IFNAR1-/-), we demonstrate that the absence of interferon signaling resulted in a robust and persistent inflammatory response against Pseudomonas aeruginosa, lipopolysaccharide, and chemotherapeutic agent bleomycin. The elevated inflammatory response in IFNAR1-/- mice was manifested as elevated myeloid cells such as macrophages and neutrophils, in the broncho-alveolar lavage. The inflammatory cell response in the IFNAR1-/- mice persisted to 14 days and there is impaired recovery and fibrotic remodeling of the lung in IFNAR1-/- mice after bleomycin injury. In the Pseudomonas infection model, the elevated inflammatory cell response led to improved bacterial clearance in IFNAR1-/- mice, although there was similar lung injury and survival. We performed RNA-sequencing of lung tissue in wildtype and IFNAR1-/- mice after LPS and bleomycin injury. Our unbiased analysis identified differentially expressed genes between IFNAR1-/- and wild-type mice, including previously unknown regulation of NOD-like receptor signaling, RIG-I signaling, and necroptosis pathway by type I interferon signaling in both models. These data provide novel insights into the conserved anti-inflammatory mechanisms of the type I interferon signaling.

5.
Dev Cell ; 59(7): 830-840.e4, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38377991

RESUMO

Tissue repair requires a highly coordinated cellular response to injury. In the lung, alveolar type 2 cells (AT2s) act as stem cells to replenish both themselves and alveolar type 1 cells (AT1s); however, the complex orchestration of stem cell activity after injury is poorly understood. Here, we establish longitudinal imaging of AT2s in murine intact tissues ex vivo and in vivo in order to track their dynamic behavior over time. We discover that a large fraction of AT2s become motile following injury and provide direct evidence for their migration between alveolar units. High-resolution morphokinetic mapping of AT2s further uncovers the emergence of distinct motile phenotypes. Inhibition of AT2 migration via genetic depletion of ArpC3 leads to impaired regeneration of AT2s and AT1s in vivo. Together, our results establish a requirement for stem cell migration between alveolar units and identify properties of stem cell motility at high cellular resolution.


Assuntos
Células Epiteliais Alveolares , Pulmão , Camundongos , Animais , Pulmão/fisiologia , Células Epiteliais Alveolares/metabolismo , Células-Tronco/metabolismo , Movimento Celular , Diferenciação Celular/fisiologia
6.
ERJ Open Res ; 10(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38375425

RESUMO

Introduction: Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial pneumonia marked by progressive lung fibrosis and a poor prognosis. Recent studies have highlighted the potential role of infection in the pathogenesis of IPF, and a prior association of the HLA-DQB1 gene with idiopathic fibrotic interstitial pneumonia (including IPF) has been reported. Owing to the important role that the human leukocyte antigen (HLA) region plays in the immune response, here we evaluated if HLA genetic variation was associated specifically with IPF risk. Methods: We performed a meta-analysis of associations of the HLA region with IPF risk in individuals of European ancestry from seven independent case-control studies of IPF (comprising 5159 cases and 27 459 controls, including a prior study of fibrotic interstitial pneumonia). Single nucleotide polymorphisms, classical HLA alleles and amino acids were analysed and signals meeting a region-wide association threshold of p<4.5×10-4 and a posterior probability of replication >90% were considered significant. We sought to replicate the previously reported HLA-DQB1 association in the subset of studies independent of the original report. Results: The meta-analysis of all seven studies identified four significant independent single nucleotide polymorphisms associated with IPF risk. However, none met the posterior probability for replication criterion. The HLA-DQB1 association was not replicated in the independent IPF studies. Conclusion: Variation in the HLA region was not consistently associated with risk in studies of IPF. However, this does not preclude the possibility that other genomic regions linked to the immune response may be involved in the aetiology of IPF.

7.
Nat Methods ; 21(3): 391-400, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374264

RESUMO

Deciphering cell-type heterogeneity is crucial for systematically understanding tissue homeostasis and its dysregulation in diseases. Computational deconvolution is an efficient approach for estimating cell-type abundances from a variety of omics data. Despite substantial methodological progress in computational deconvolution in recent years, challenges are still outstanding. Here we enlist four important challenges related to computational deconvolution: the quality of the reference data, generation of ground truth data, limitations of computational methodologies, and benchmarking design and implementation. Finally, we make recommendations on reference data generation, new directions of computational methodologies, and strategies to promote rigorous benchmarking.


Assuntos
Biologia Computacional , Genômica , Biologia Computacional/métodos , Benchmarking
8.
bioRxiv ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38260691

RESUMO

Tissue homeostasis is controlled by cellular circuits governing cell growth, organization, and differentation. In this study we identify previously undescribed cell-to-cell communication that mediates information flow from mechanosensitive pleural mesothelial cells to alveolar-resident stem-like tuft cells in the lung. We find mesothelial cells to express a combination of mechanotransduction genes and lineage-restricted ligands which makes them uniquely capable of responding to tissue tension and producing paracrine cues acting on parenchymal populations. In parallel, we describe a large population of stem-like alveolar tuft cells that express the endodermal stem cell markers Sox9 and Lgr5 and a receptor profile making them uniquely sensitive to cues produced by pleural Mesothelium. We hypothesized that crosstalk from mesothelial cells to alveolar tuft cells might be central to the regulation of post-penumonectomy lung regeneration. Following pneumonectomy, we find that mesothelial cells display radically altered phenotype and ligand expression, in a pattern that closely tracks with parenchymal epithelial proliferation and alveolar tissue growth. During an initial pro-inflammatory stage of tissue regeneration, Mesothelium promotes epithelial proliferation via WNT ligand secretion, orchestrates an increase in microvascular permeability, and encourages immune extravasation via chemokine secretion. This stage is followed first by a tissue remodeling period, characterized by angiogenesis and BMP pathway sensitization, and then a stable return to homeostasis. Coupled with key changes in parenchymal structure and matrix production, the cumulative effect is a now larger organ including newly-grown, fully-functional tissue parenchyma. This study paints Mesothelial cells as a key orchestrating cell type that defines the boundary of the lung and exerts critical influence over the tissue-level signaling state regulating resident stem cell populations. The cellular circuits unearthed here suggest that human lung regeneration might be inducible through well-engineered approaches targeting the induction of tissue regeneration and safe return to homeostasis.

9.
medRxiv ; 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38293162

RESUMO

Background: Idiopathic pulmonary fibrosis (IPF) is a chronic lung condition that is more prevalent in males than females. The reasons for this are not fully understood, with differing environmental exposures due to historically sex-biased occupations, or diagnostic bias, being possible explanations. To date, over 20 independent genetic variants have been identified to be associated with IPF susceptibility, but these have been discovered when combining males and females. Our aim was to test for the presence of sex-specific associations with IPF susceptibility and assess whether there is a need to consider sex-specific effects when evaluating genetic risk in clinical prediction models for IPF. Methods: We performed genome-wide single nucleotide polymorphism (SNP)-by-sex interaction studies of IPF risk in six independent IPF case-control studies and combined them using inverse-variance weighted fixed effect meta-analysis. In total, 4,561 cases (1,280 females and 2,281 males) and 23,500 controls (8,360 females and 14,528 males) of European genetic ancestry were analysed. We used polygenic risk scores (PRS) to assess differences in genetic risk prediction between males and females. Findings: Three independent genetic association signals were identified. All showed a consistent direction of effect across all individual IPF studies and an opposite direction of effect in IPF susceptibility between females and males. None had been previously identified in IPF susceptibility genome-wide association studies (GWAS). The predictive accuracy of the PRSs were similar between males and females, regardless of whether using combined or sex-specific GWAS results. Interpretation: We prioritised three genetic variants whose effect on IPF risk may be modified by sex, however these require further study. We found no evidence that the predictive accuracy of common SNP-based PRSs varies significantly between males and females.

10.
Eur Respir J ; 63(1)2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38212075

RESUMO

The pleural lining of the thorax regulates local immunity, inflammation and repair. A variety of conditions, both benign and malignant, including pleural mesothelioma, can affect this tissue. A lack of knowledge concerning the mesothelial and stromal cells comprising the pleura has hampered the development of targeted therapies. Here, we present the first comprehensive single-cell transcriptomic atlas of the human parietal pleura and demonstrate its utility in elucidating pleural biology. We confirm the presence of known universal fibroblasts and describe novel, potentially pleural-specific, fibroblast subtypes. We also present transcriptomic characterisation of multiple in vitro models of benign and malignant mesothelial cells, and characterise these through comparison with in vivo transcriptomic data. While bulk pleural transcriptomes have been reported previously, this is the first study to provide resolution at the single-cell level. We expect our pleural cell atlas will prove invaluable to those studying pleural biology and disease. It has already enabled us to shed light on the transdifferentiation of mesothelial cells, allowing us to develop a simple method for prolonging mesothelial cell differentiation in vitro.


Assuntos
Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Humanos , Pleura/patologia , Mesotelioma/genética , Mesotelioma/patologia , Mesotelioma Maligno/patologia , Neoplasias Pleurais/genética , Neoplasias Pleurais/patologia , Perfilação da Expressão Gênica
11.
Am J Physiol Cell Physiol ; 326(3): C964-C977, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189137

RESUMO

Mast-cell expressed membrane protein-1 (MCEMP1) is higher in patients with idiopathic pulmonary fibrosis (IPF) with an increased risk of death. Here we aimed to establish the mechanistic role of MCEMP1 in pulmonary fibrosis. We identified increased MCEMP1 expression in classical monocytes and alveolar macrophages in IPF compared with controls. MCEMP1 is upregulated by transforming growth factor beta (TGFß) at the mRNA and protein levels in monocytic leukemia THP-1 cells. TGFß-mediated MCEMP1 upregulation results from the cooperation of SMAD3 and SP1 via concomitant binding to SMAD3/SP1 cis-regulatory elements within the MCEMP1 promoter. We also found that MCEMP1 regulates TGFß-mediated monocyte chemotaxis, adhesion, and migration. Our results suggest that MCEMP1 may regulate the migration and transition of monocytes to monocyte-derived alveolar macrophages during pulmonary fibrosis development and progression.NEW & NOTEWORTHY MCEMP1 is highly expressed in circulating classical monocytes and alveolar macrophages in IPF, is regulated by TGFß, and participates in the chemotaxis, adhesion, and migration of circulating monocytes by modulating the effect of TGFß in RHO activity.


Assuntos
Fibrose Pulmonar Idiopática , Macrófagos Alveolares , Humanos , Macrófagos Alveolares/metabolismo , Monócitos/metabolismo , Proteínas de Membrana/metabolismo , Quimiotaxia , Mastócitos/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo
12.
Ann Am Thorac Soc ; 21(1): 1-11, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37903340

RESUMO

"Translational medicine" has been a buzzword for over two decades. The concept was intended to be lofty, to reflect a new "bench-to-bedside" approach to basic and clinical research that would bridge fields, close gaps, accelerate innovation, and shorten the time and effort it takes to bring novel technologies from basic discovery to clinical application. Has this approach been successful and lived up to its promise? Despite incredible scientific advances and innovations developed within academia, successful clinical translation into real-world solutions has been difficult. This has been particularly challenging within the pulmonary field, because there have been fewer U.S. Food and Drug Administration-approved drugs and higher failure rates for pulmonary therapies than with other common disease areas. The American Thoracic Society convened a working group with the goal of identifying major challenges related to the commercialization of technologies within the pulmonary space and opportunities to enhance this process. A survey was developed and administered to 164 participants within the pulmonary arena. This report provides a summary of these survey results. Importantly, this report identifies a number of poorly recognized challenges that exist in pulmonary academic settings, which likely contribute to diminished efficiency of commercialization efforts, ultimately hindering the rate of successful clinical translation. Because many innovations are initially developed in academic settings, this is a global public health issue that impacts the entire American Thoracic Society community. This report also summarizes key resources and opportunities and provides recommendations to enhance successful commercialization of pulmonary technologies.


Assuntos
Tecnologia Biomédica , Pneumologia , Ciência Translacional Biomédica , Humanos , Estados Unidos
13.
Eur Respir J ; 63(1)2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37918852

RESUMO

RATIONALE: Recent data suggest that the localisation of airway epithelial cells in the distal lung in idiopathic pulmonary fibrosis (IPF) may drive pathology. We set out to discover whether chemokines expressed in these ectopic airway epithelial cells may contribute to the pathogenesis of IPF. METHODS: We analysed whole lung and single-cell transcriptomic data obtained from patients with IPF. In addition, we measured chemokine levels in blood, bronchoalveolar lavage (BAL) of IPF patients and air-liquid interface cultures. We employed ex vivo donor and IPF lung fibroblasts and an animal model of pulmonary fibrosis to test the effects of chemokine signalling on fibroblast function. RESULTS: By analysis of whole-lung transcriptomics, protein and BAL, we discovered that CXCL6 (a member of the interleukin-8 family) was increased in patients with IPF. Elevated CXCL6 levels in the BAL of two cohorts of patients with IPF were associated with poor survival (hazard ratio of death or progression 1.89, 95% CI 1.16-3.08; n=179, p=0.01). By immunostaining and single-cell RNA sequencing, CXCL6 was detected in secretory cells. Administration of mCXCL5 (LIX, murine CXCL6 homologue) to mice increased collagen synthesis with and without bleomycin. CXCL6 increased collagen I levels in donor and IPF fibroblasts 4.4-fold and 1.7-fold, respectively. Both silencing of and chemical inhibition of CXCR1/2 blocked the effects of CXCL6 on collagen, while overexpression of CXCR2 increased collagen I levels 4.5-fold in IPF fibroblasts. CONCLUSIONS: CXCL6 is expressed in ectopic airway epithelial cells. Elevated levels of CXCL6 are associated with IPF mortality. CXCL6-driven collagen synthesis represents a functional consequence of ectopic localisation of airway epithelial cells in IPF.


Assuntos
Fibrose Pulmonar Idiopática , Animais , Humanos , Camundongos , Bleomicina , Quimiocina CXCL6/metabolismo , Quimiocinas/metabolismo , Colágeno/metabolismo , Fibroblastos/metabolismo , Fibrose Pulmonar Idiopática/genética , Pulmão/patologia
15.
Am J Respir Crit Care Med ; 209(4): 362-373, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38113442

RESUMO

Despite progress in elucidation of disease mechanisms, identification of risk factors, biomarker discovery, and the approval of two medications to slow lung function decline in idiopathic pulmonary fibrosis and one medication to slow lung function decline in progressive pulmonary fibrosis, pulmonary fibrosis remains a disease with a high morbidity and mortality. In recognition of the need to catalyze ongoing advances and collaboration in the field of pulmonary fibrosis, the NHLBI, the Three Lakes Foundation, and the Pulmonary Fibrosis Foundation hosted the Pulmonary Fibrosis Stakeholder Summit on November 8-9, 2022. This workshop was held virtually and was organized into three topic areas: 1) novel models and research tools to better study pulmonary fibrosis and uncover new therapies, 2) early disease risk factors and methods to improve diagnosis, and 3) innovative approaches toward clinical trial design for pulmonary fibrosis. In this workshop report, we summarize the content of the presentations and discussions, enumerating research opportunities for advancing our understanding of the pathogenesis, treatment, and outcomes of pulmonary fibrosis.


Assuntos
Pesquisa Biomédica , Fibrose Pulmonar Idiopática , Estados Unidos , Humanos , National Heart, Lung, and Blood Institute (U.S.) , Lagos , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/terapia , Fatores de Risco
16.
Front Immunol ; 14: 1275845, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37915582

RESUMO

Rationale: COPD is characterized by chronic airway inflammation, small airways changes, with disappearance and obstruction, and also distal/alveolar destruction (emphysema). The chronology by which these three features evolve with altered mucosal immunity remains elusive. This study assessed the mucosal immune defense in human control and end-stage COPD lungs, by detailed microCT and RNA transcriptomic analysis of diversely affected zones. Methods: In 11 control (non-used donors) and 11 COPD (end-stage) explant frozen lungs, 4 cylinders/cores were processed per lung for microCT and tissue transcriptomics. MicroCT was used to quantify tissue percentage and alveolar surface density to classify the COPD cores in mild, moderate and severe alveolar destruction groups, as well as to quantify terminal bronchioles in each group. Transcriptomics of each core assessed fold changes in innate and adaptive cells and pathway enrichment score between control and COPD cores. Immunostainings of immune cells were performed for validation. Results: In mildly affected zones, decreased defensins and increased mucus production were observed, along CD8+ T cell accumulation and activation of the IgA pathway. In more severely affected zones, CD68+ myeloid antigen-presenting cells, CD4+ T cells and B cells, as well as MHCII and IgA pathway genes were upregulated. In contrast, terminal bronchioles were decreased in all COPD cores. Conclusion: Spatial investigation of end-stage COPD lungs show that mucosal defense dysregulation with decreased defensins and increased mucus and IgA responses, start concomitantly with CD8+ T-cell accumulation in mild emphysema zones, where terminal bronchioles are already decreased. In contrast, adaptive Th and B cell activation is observed in areas with more advanced tissue destruction. This study suggests that in COPD innate immune alterations occur early in the tissue destruction process, which affects both the alveoli and the terminal bronchioles, before the onset of an adaptive immune response.


Assuntos
Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Inflamação , Defensinas , Imunoglobulina A
17.
Chest ; 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37977267

RESUMO

BACKGROUND: Patients with sarcoidosis who experience the development of severe clinical phenotypes of pulmonary fibrosis or multiorgan disease experience debilitating symptoms, with fatigue being a common chief complaint. Studies that have investigated this patient-related outcome measure (PROM) have used the Fatigue Assessment Scale (FAS), a self-reported questionnaire that reflects mental and physical domains. Despite extensive work, its cause is unknown, and treatment options remain limited. Previously, we showed that the plasma of patients with sarcoidosis with extrapulmonary disease endorsing fatigue was enriched for mitochondrial DNA (mtDNA), a ligand for the innate immune receptor Toll-like Receptor 9 (TLR9). Through our cross-disciplinary platform, we investigated a relationship between sarcoidosis-induced fatigue and circulating mtDNA. RESEARCH QUESTION: Is there a psychobiologic mechanism that connects sarcoidosis-induced fatigue and mtDNA-mediated TLR9 activation? STUDY DESIGN AND METHODS: Using a local cohort of patients at Yale (discovery cohort) and the National Institutes of Health-sponsored Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis study (validation cohort), we scored the FAS and quantified in the plasma mtDNA concentrations, TLR9 activation, and cytokine levels. RESULTS: Although FAS scores were independent of corticosteroid use and Scadding stage, we observed a robust association between FAS scores, which included mental and physical domains, and multiorgan sarcoidosis. Subsequently, we identified a significant correlation between plasma mtDNA concentrations and all domains of fatigue. Additionally, we found that TLR9 activation is associated with all aspects of the FAS and partially mediates this PROM through mtDNA. Last, we found that TLR9-associated soluble mediators in the plasma are independent of all facets of fatigue. INTERPRETATION: Through our cross-disciplinary translational platform, we identified a previously unrecognized psychobiologic connection between sarcoidosis-induced fatigue and circulating mtDNA concentrations potentially mediated by TLR9 activation. Mechanistic work that investigates the contribution of mtDNA-mediated innate immune activation in this PROM and clinical studies with prospective cohorts has the potential to catalyze novel therapeutic strategies for this patient population and those patients with similar conditions.

18.
bioRxiv ; 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37873485

RESUMO

Background: Mast-Cell Expressed Membrane Protein-1 (MCEMP1) is higher in Idiopathic Pulmonary Fibrosis (IPF) patients with increased risk of death and poor outcomes. Here we seek to establish the mechanistic role of MCEMP1 in pulmonary fibrosis. Methods: MCEMP1 expression was analyzed by single-cell RNA sequencing, immunofluorescence in Peripheral Blood Mononuclear Cells (PBMC) as well as in lung tissues from IPF patients and controls. Chromatin Immunoprecipitation (ChiP) and Proximity Ligation Assay (PLA) were used to study the transcriptional regulation of MCEMP1 . Transient RNA interference and lentivirus transduction were used to knockdown and knock-in MCEMP1 in THP-1 cells to study chemotaxis, adhesion, and migration. Bulk RNA sequencing was used to identify the mechanisms by which MCEMP1 participates in monocyte function. Active RHO pull-down assay was used to validate bulk RNA sequencing results. Results: We identified increased MCEMP1 expression in classical monocytes and alveolar macrophages in IPF compared to controls. MCEMP1 was upregulated by TGFß at the mRNA and protein levels in THP-1. TGFß-mediated MCEMP1 upregulation results from the cooperation of SMAD3 and SP1 via concomitant binding to SMAD3/SP1 cis -regulatory elements within the MCEMP1 promoter. In terms of its function, we found that MCEMP1 regulates TGFß-mediated monocyte chemotaxis, adhesion, and migration. 400 differentially expressed genes were found to increase after TGFß stimulation of THP-1, further increased in MCEMP1 knock-in cells treated with TGFß and decreased in MCEMP1 knockdown cells treated with TGFß. GO annotation analysis of these genes showed enrichment for positive regulation of RHO GTPase activity and signal transduction. While TGFß enhanced RHO GTPase activity in THP-1 cells, this effect was attenuated following MCEMP1 knockdown. Conclusion: MCEMP1 is highly expressed in circulating classical monocytes and alveolar macrophages in IPF. MCEMP1 is regulated by TGFß and participates in the chemotaxis, adhesion, and migration of circulating monocytes by modulating the effect of TGFß in RHO activity. Our results suggest that MCEMP1 may regulate the migration and transition of monocytes to monocyte-derived alveolar macrophages during pulmonary fibrosis development and progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...